This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK


## Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title $\sim$ content=t713455674

## Two- and three-dimensional coordination polymers of lanthanide tartrate: synthesis, crystal structures and luminescence

Pengfei Yaná; Jingchun Xing ${ }^{\text {ab }}$; Guangming Lia ${ }^{\text {a }}$, Wenbin Sun ${ }^{\text {a }}$; Juwen Zhang ${ }^{\text {a ; Guangfeng Hou }}{ }^{\text {a }}$ ${ }^{\text {a }}$ Key Laboratory of Functional Inorganic Chemistry (HLJU), Ministry of Education, P. R. China; School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China

To cite this Article Yan, Pengfei , Xing, Jingchun, Li, Guangming, Sun, Wenbin, Zhang, Juwen and Hou, Guangfeng(2009) 'Two- and three-dimensional coordination polymers of lanthanide tartrate: synthesis, crystal structures and luminescence', Journal of Coordination Chemistry, 62: 13, 2095-2107
To link to this Article: DOI: 10.1080/00958970902769807
URL: http://dx.doi.org/10.1080/00958970902769807

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

# Two- and three-dimensional coordination polymers of lanthanide tartrate: synthesis, crystal structures and luminescence 

PENGFEI YAN, JINGCHUN XING, GUANGMING LI*, WENBIN SUN, JUWEN ZHANG and GUANGFENG HOU

Key Laboratory of Functional Inorganic Chemistry (HLJU), Ministry of Education, P. R. China; School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, P. R. China
(Received 18 July 2008; in final form 21 October 2008)


#### Abstract

Several new coordination polymers of lanthanide tartrate with three types of topological structures, namely $\left[\mathrm{Ln}_{2}(\mathrm{DL}-\operatorname{tart})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}[\mathrm{Ln}=\mathrm{La}(\mathbf{1}), \mathrm{Nd}(\mathbf{2})$, and $\mathrm{Sm}(\mathbf{3})],\left[\mathrm{Ln}_{2}(\mathrm{D}-\right.$ $\left.\operatorname{tart})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}[\mathrm{Ln}=\mathrm{Eu}(4), \mathrm{Tb}(5)$, and $\mathrm{Dy}(6)]$, and $\left[\mathrm{Lu}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right)\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{6}\right)\right] \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$ (7), have been synthesized by hydrothermal synthesis. X-ray crystallographic analysis reveals that $\mathbf{1}$ is a unique 3-D network, whereas 5 with a 3-D network and 7 with a 2-D network are isomorphous with their analogs. All lanthanide ions are nine-coordinate through oxygen donors. Four different coordination modes of tartrate occur in these complexes. Luminescence spectra reveal that $\mathbf{4}, \mathbf{5}$, and $\mathbf{6}$ emit characteristic luminescence of corresponding lanthanide ions.


Keywords: Synthesis; Structure; Lanthanide tartrate; Luminescence

## 1. Introduction

The design and synthesis of lanthanide compounds attract interest because of their structures and potential applications in magnetism [1], catalysis [2], and luminescence [3-23]. As a simple and important organic acid, tartaric acid has been employed in synthesis of lanthanide tartrate. There are several lanthanide tartrates known, $\left[\mathrm{Er}_{2}(\mathrm{D}-\operatorname{tart})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O} \quad[24], \quad\left[\mathrm{Gd}_{2}(\mathrm{D}-\operatorname{tart})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O} \quad$ [25], $\quad\left[\mathrm{Sm}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right)\right.$ $\left.\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{6}\right)\right] \cdot 3 \mathrm{H}_{2} \mathrm{O} \quad[26], \quad\left[\mathrm{Y}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right)\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{6}\right)\right] \cdot 2.5 \mathrm{H}_{2} \mathrm{O} \quad$ [27], $\left[\mathrm{Er}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right)\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{6}\right)\right.$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ ] [28], and $\left[\mathrm{Eu}^{\mathrm{II}}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ [29]. However, to our knowledge, almost all of the reports were focused on the synthesis and crystal structures. Magnetic properties of only $\left[\mathrm{Gd}_{2}(\mathrm{D}-\operatorname{tart})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ [25] were discussed and information on physicochemical properties of other lanthanide tartrate complexes was unknown. Tartaric acid is a simple and inexpensive chiral source. Kim and co-workers reported that a metal coordination polymer containing tartrate exhibited chiral catalytic properties [30]. In this article, reactions of tartaric acid and corresponding lanthanide nitrate under hydrothermal conditions afford several coordination polymers. X-ray

[^0]crystallographic analysis reveals that $\mathbf{1 , 5}$, and $\mathbf{7}$ belong to $P 2_{l} / n, P 1$, and $P 4_{1} 2_{l} 2$ space groups, respectively. Compound $\mathbf{1}$ displays a unique 3-D network structure, while $\mathbf{5}$ and 7 show 3-D and 2-D frameworks in accord with their analogs. Compounds 4, 5, and $\mathbf{6}$ exhibit the characteristic luminescence of $\mathrm{Eu}(\mathrm{III}), \mathrm{Tb}(\mathrm{III})$, and $\mathrm{Dy}(\mathrm{III})$ ions, respectively.

## 2. Experimental

### 2.1. General

$\mathrm{Ln}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ were prepared by reactions of $\mathrm{Ln}_{2} \mathrm{O}_{3}$ and nitric acid. Other materials are commercially available and used as supplied. Elemental analyses were performed on a Perkin-Elmer 2400 analyzer. IR spectra were obtained on a Perkin-Elmer 60000 spectrophotometer using KBr disks in the range $4000-370 \mathrm{~cm}^{-1}$. UV-Vis spectra were recorded on a Shimadzu UV2240 spectrophotometer. Fluorescence spectra were taken on a Perkin-Elmer LS-55 fluorescence photometer. Thermal analyses were conducted on a DTA- 1700 with a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$ in a temperature range of $30-830^{\circ} \mathrm{C}$ in $\mathrm{N}_{2}$ atmosphere.

### 2.2. Crystallographic data collection and refinement

Crystal data for $\mathbf{1 , 5}$, and $\mathbf{7}$ were collected on a Rigaku Raxis-Rapid X-ray diffractometer equipped with graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation ( $\lambda=0.71073 \AA$ ) at 293(2) K. The intensity data sets were collected with the $\omega$-scan technique. Empirical absorption corrections based on equivalent reflections were applied. The structures were solved by direct methods and refined by full-matrix least-squares. All calculations were performed with the SHELXS-97 package. Pertinent crystal data and structure refinement results for $\mathbf{1}, \mathbf{5}$, and $\mathbf{7}$ are listed in table 1 .

### 2.3. Synthesis of $\left[\mathrm{La}_{2}(\text { DL-tart })_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ (1)

An aqueous solution ( 30 mL ) of DL-tartaric acid $(0.2250 \mathrm{~g}, 1.5 \mathrm{mmol})$ and $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.4329 \mathrm{~g}, 1.0 \mathrm{mmol})$ was transferred to a Teflon lined steel vessel $(50 \mathrm{~mL})$ and the hydrothermal reaction was carried out maintaining the temperature at $140^{\circ} \mathrm{C}$ in an oven for 48 h . After cooling the reaction vessel to room temperature, the resultant mixture was transferred to a beaker. Partial evaporation of the solution affords colorless crystals of $\left[\mathrm{La}_{2}(\text { DL-tart })_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}(\mathbf{1})$. Yield: $70 \%(0.2807 \mathrm{~g})$. Elemental analysis (\%): Calcd for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{La}_{4} \mathrm{O}_{45}$ (1604.17): C, 17.97; H, 2.51. Found: C, 17.99; H, 2.52. IR (KBr, cm ${ }^{-1}$ ): 3419 (s, v, br), 2902 (vw), 2649 (s), 1594 (vs), 1459 (vw), 1384(s), 1313 (w), 1278 (w), 1135 (w), 1056 (w), 1019 (w), 940 (w), 906 (w), 820 (w), 686 (w), and 543 (w). TG-DTA: $55-200^{\circ} \mathrm{C}$ (weight loss $10.1 \%,-4.5 \mathrm{H}_{2} \mathrm{O}$ ); $280-600^{\circ} \mathrm{C}$ (weight loss $55.4 \%,-3 \mathrm{H}_{4}$ tart).

### 2.4. Synthesis of $\left[\mathrm{Nd}_{2}(\text { D-tart })_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ (2)

An aqueous solution $(30 \mathrm{~mL})$ of D-tartaric acid $(0.2250 \mathrm{~g}, 1.5 \mathrm{mmol})$ and $\mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.4360 \mathrm{~g}, 1.0 \mathrm{mmol})$ was treated similarly as above to afford light

Table 1. Crystal data for $\mathbf{1}, \mathbf{5}$, and 7.

| Crystal parameters | 1 | 5 | 7 |
| :---: | :---: | :---: | :---: |
| Empirical formula | $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{La}_{2} \mathrm{O}_{22.5}$ | $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{23} \mathrm{~Tb}_{2}$ | $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{LuO}_{14.5}$ |
| Formula weight | 802.1 | 848.10 | 516.7 |
| Temperature (K) | 293(2) | 293(2) | 293(2) |
| Wavelength (A) | 0.71073 | 0.71073 | 0.71073 |
| Crystal system | Monoclinic | Triclinic | Tetragonal |
| Space group | $P 2_{1 /} / n$ | P1 (no.1) | $P 4_{1} 2_{1} 2$ (no. 92) |
| Unit cell dimensions ( $\mathrm{A},{ }^{\circ}$ ) |  |  |  |
| $a$ | 12.546(3) | 5.990(4) | 5.9747(8) |
| $b$ | 12.872(3) | 7.435(3) | 5.9747(8) |
| $c$ | 13.314(3) | 13.323(3) | 36.366(7) |
| $\alpha$ | 90 | 102.89(3) | 90 |
| $\beta$ | 100.22(3) | 101.55(3) | 90 |
| $\gamma$ | 90 | 90.85(3) | 90 |
| Volume ( $\AA^{3}$ ) | 2116.0(9) | 565.5(5) | 1298.16(4) |
| Z | 4 | 1 | 2 |
| Calculated density ( $\mathrm{mg} \mathrm{m}^{-3}$ ) | 2.518 | 2.490 | 2.643 |
| Absorption coefficient ( $\mathrm{mm}^{-1}$ ) | 4.099 | 6.312 | 4.099 |
| $F(000)$ | 1544 | 404 | 994 |
| Crystal size ( $\mathrm{mm}^{3}$ ) | $0.16 \times 0.14 \times 0.14$ | $0.22 \times 0.20 \times 0.19$ | $0.11 \times 0.12 \times 0.24$ |
| $\theta$ range ( ${ }^{\circ}$ ) | 3.08-27.43 | 3.27-27.48 | 3.46-27.48 |
| Limiting indices | $-16 \leq h \leq 15$ | $-7 \leq h \leq 6$ | $-7 \leq h \leq 7$ |
|  | $-16 \leq k \leq 16$ | $-8 \leq k \leq 8$ | $-7 \leq k \leq 7$ |
|  | $-17 \leq l \leq 15$ | $-15 \leq l \leq 15$ | $-47 \leq l \leq 47$ |
| Reflections collected | 16935 | 4467 | 11978 |
| Completeness to theta $=27.48^{\circ}$ | 95.8\% | 99.7\% | 99.8\% |
| Max. and min. transmission | 0.6016 and 0.5673 | 0.7015 and 0.4915 | 0.4038 and 0.3064 |
| Data/restraints/parameters | 4657/24/385 | 2280/0/146 | 1488/7/115 |
| Goodness-of-fit on $F^{2}$ | 1.100 | 1.223 | 1.105 |
| Final $R$ indices [ $I>2 \sigma(I)$ ] | $R_{1}=0.0267$ | $R_{1}=0.0243$ | $R_{1}=0.0210$ |
|  | $w R_{2}=0.0463$ | $w R_{2}=0.0736$ | $w R_{2}=0.0417$ |
| $R$ indices (all data) | $R_{1}=0.0347$ | $R_{1}=0.0255$ | $R_{1}=0.0221$ |
|  | $w R_{2}=0.0481$ | $w R_{2}=0.0815$ | $w R_{2}=0.0420$ |

pink crystals of $\left[\mathrm{Nd}_{2}(\mathrm{D}-\operatorname{tart})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ (2). Yield: $72 \%$ ( 0.2924 g). Elemental analysis (\%): Calcd for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{Nd}_{4} \mathrm{O}_{45}$ (1625.51): C, 17.73; H, 2.48. Found: C, 17.70; H, 2.42. IR (KBr, cm ${ }^{-1}$ ): 3500-3022 (s, v, br), 2821 (w), 2687 (w), 2537 (w), 1614 (vs), 1556 (vs), 1411 (vs), 1314 (w), 1133 (w), 1071 (w), 936 (w), 881 (w), 844 (w), 711 (w), and 604 (w).

### 2.5. Synthesis of $\left[\mathrm{Sm}_{2}(\text { D-tart })_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ (3)

An aqueous solution $(30 \mathrm{~mL})$ of D-tartaric acid $(0.2250 \mathrm{~g}, 1.5 \mathrm{mmol})$ and $\mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.4460 \mathrm{~g}, 1.0 \mathrm{mmol})$ was treated similar to $\mathbf{1}$ to afford light yellow crystals of $\left[\mathrm{Sm}_{2}(\mathrm{D}-\operatorname{tart})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (3). Yield: $74 \%$ ( 0.3051 g ). Elemental analysis (\%): Calcd for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{O}_{45} \mathrm{Sm}_{4}$ (1649.99): C, 17.47; H, 2.44. Found: C, 17.42; H, 2.39. IR (KBr, cm ${ }^{-1}$ ): 3500-3052 (s, v, br), 2805 (w), 2686 (w), 2529 (w), 1608 (vs), 1563 (vs), 1410 (vs), 1313 (w), 1132 (w), 1069 (w), 935 (w), 880 (w), 844 (w), 710 (w), and 604 (w).

### 2.6. Synthesis of $\left[\mathrm{Eu}_{2}(\text { D-tart })_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (4)

An aqueous solution $(30 \mathrm{~mL})$ of D-tartaric acid $(0.2250 \mathrm{~g}, 1.5 \mathrm{mmol})$ and $\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3}$. $6 \mathrm{H}_{2} \mathrm{O}(0.4470 \mathrm{~g}, 1.0 \mathrm{mmol})$ was treated similarly as above to afford colorless crystals of $\left[\mathrm{Eu}_{2}(\mathrm{D}-\operatorname{tart})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (4). Yield: $68 \%(0.2815 \mathrm{~g})$. Elemental analysis (\%): Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{23} \mathrm{Eu}_{2}$ (834.2): C, 17.28; H, 2.17. Found: C, 17.32; H, 2.21. IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): 3500-3029 (s, v, br), 2798 (w), 2701 (w), 2537 (w), 1621 (vs), 1559 (vs), 1411 (vs), 1313 (w), 1133 (w), 1071 (w), 936 (w), 882 (w), 845 (w), 711 (w), and 603 (w).

### 2.7. Synthesis of $\left[\mathrm{Tb}_{2}(\text { D-tart })_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (5)

An aqueous solution $(30 \mathrm{~mL})$ of D-tartaric acid $(0.2250 \mathrm{~g}, 1.5 \mathrm{mmol})$ and $\mathrm{Tb}\left(\mathrm{NO}_{3}\right)_{3}$. $6 \mathrm{H}_{2} \mathrm{O}(0.4530 \mathrm{~g}, 1.0 \mathrm{mmol})$ was treated similar to $\mathbf{1}$ to afford colorless crystals of $\left[\mathrm{Tb}_{2}(\mathrm{D}-\operatorname{tart})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}(5)$. Yield: $65 \%(0.2769 \mathrm{~g})$. Elemental analysis (\%): Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{23} \mathrm{~Tb}_{2}$ (848.11): C, 16.99; H, 2.14. Found: C, 16.90; H, 2.20. IR ( ${\mathrm{KBr}, \mathrm{cm}^{-1} \text { ): }}_{\text {: }}$ 3500-3037 (s, v, br), 2805 (w), 2708 (w), 2537 (w), 1621 (vs), 1567 (vs), 1410 (vs), 1317 (w), 1133 (w), 1082 (w), 940 (w), 883 (w), 843 (w), 712 (w), and 608 (w). TG-DTA: $90-200^{\circ} \mathrm{C}$ (weight loss $10.6 \%,-5 \mathrm{H}_{2} \mathrm{O}$ ); $300-640^{\circ} \mathrm{C}$ (weight loss $52.1 \%,-3 \mathrm{H}_{4}$ tart).

### 2.8. Synthesis of $\left[D y_{2}(D \text {-tart })_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (6)

An aqueous solution $(30 \mathrm{~mL})$ of D-tartaric acid $(0.2250 \mathrm{~g}, 1.5 \mathrm{mmol})$ and $\mathrm{Dy}\left(\mathrm{NO}_{3}\right)_{3}$. $6 \mathrm{H}_{2} \mathrm{O}(0.4580 \mathrm{~g}, 1.0 \mathrm{mmol})$ was treated similarly as above to afford light yellow crystals of $\left[\mathrm{Dy}_{2}(\mathrm{D}-\operatorname{tart})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}(6)$. Yield: $62 \%(0.2663 \mathrm{~g})$. Elemental analysis (\%): Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{Dy}_{2} \mathrm{O}_{23}$ (859.29): C, 16.77; H, 2.58. Found: C, 16.72; H, 2.54. IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): 3500-3029 (s, v, br), 2817 (w), 2692 (w), 2537 (w), 1615 (vs), 1559 (vs), 1412 (vs), 1314 (w), 1133 (w), 1071 (w), 938 (w), 883 (w), 845 (w), 711 (w), and 597 (w).

### 2.9. Synthesis of $\left[\mathrm{Lu}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right)\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{6}\right)\right] \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$ (7)

An aqueous solution $(30 \mathrm{~mL})$ of D-tartaric acid $(0.1500 \mathrm{~g}, 1.0 \mathrm{mmol})$ and $\mathrm{Lu}\left(\mathrm{NO}_{3}\right)_{3}$. $6 \mathrm{H}_{2} \mathrm{O}(0.2345 \mathrm{~g}, 0.5 \mathrm{mmol})$ was treated similarly as above to afford colorless crystals of $\left[\mathrm{Lu}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right)\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{6}\right)\right] \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$ (7). Yield: $53 \%(0.1369 \mathrm{~g})$. Elemental analysis (\%): Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{Lu}_{2} \mathrm{O}_{29}$ (1034.31): C, 18.58; H, 2.73. Found: C, 18.54; H, 2.68. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3432$ (s, v), 3261 (vw), 2671 (vw), 1719 (m, vw), 1611 (vs), 1559 (vs), 1411 (vs), 1304 (w), 1138 (w), 1066 (w), 943 (w), 839 (w), 843 (w), 712 (w), and 603 (w). TG-DTA: $95-180^{\circ} \mathrm{C}$ (weight loss $8.7 \%,-2.5 \mathrm{H}_{2} \mathrm{O}$ ); $280-600^{\circ} \mathrm{C}$ (weight loss $57.5 \%$, $-\mathrm{H}_{4}$ tart and $\mathrm{H}_{5}$ tart).

## 3. Results and discussion

### 3.1. Description of the structures

3.1.1. $\left[\mathrm{La}_{2}(\text { DL-tart })_{3}\left(\mathbf{H}_{2} \mathrm{O}\right)_{3}\right] \cdot \mathbf{1 . 5} \mathbf{H}_{2} \mathrm{O}$ (1). Compound 1, crystallizing in a monoclinic system with a $P 2_{1} / n$ space group, has a 3-D network built by connecting the $\mathrm{La}(\mathrm{III})$ ions
with their neighboring tartrate ligand (figure 1). This has a 3-D open framework with a low-level ancillary aquation. The structure has hydrophilic channels of ca. $5 \times 9 \AA$. Obviously, two $\mathrm{La}($ III ) ions are pseudo-inversion related. Although both $\mathrm{La}($ III ) ions are nine-coordinate by nine oxygens, their chemical environments are different. Lal has two oxygens from two waters and seven oxygens from four tartrates in a distorted monocapped square-antiprism (figure 2a). The distorted square-antiprism consists of $\mathrm{O}(1), \mathrm{O}(3), \mathrm{O}(19), \mathrm{O}(9), \mathrm{O}(7), \mathrm{O}(18), \mathrm{O}(12)$, and $\mathrm{O}(20)$. The $\mathrm{O}(17)$ atom is at the top of the cap. However, La2 ion has one oxygen from water and eight oxygens from five tartrates, adopting a distorted tricapped trigonal prism (figure 2b). The distorted trigonal prism is composed of $\mathrm{O}(2), \mathrm{O}(15), \mathrm{O}(21), \mathrm{O}(13), \mathrm{O}(11)$, and $\mathrm{O}(4)$ atoms. The $\mathrm{O}(6), \mathrm{O}(10)$, and $\mathrm{O}(14)$ atoms are at the vertices of each square pyramid. In $\mathbf{1}$, the bond distances of $\mathrm{La} 1-\mathrm{O}$ and $\mathrm{La} 2-\mathrm{O}$ are in the range of 2.427(3)-2.679(3) and $2.451(2)-2.705$ (3) $\AA$, respectively. Although the three tartrate ligands are each crystallographically independent, they are chemically consistent and can be classed as $\mu_{3}, \kappa^{5}$ (figure 3a), namely, they bind to three La(III) ions using five oxygen atoms of the tartrate. Half of the tartrate has "1,2-chelation" involving a carboxylate oxygen and the ortho-hydroxy. The other half has chelation involving carboxylate oxygen and the ortho-hydroxy. A bonding mode, to our knowledge, was not previously reported. This ligand combines with $\mathrm{La}(\mathrm{IIII})$ to form a condensed 2-D slab of $\left[\mathrm{La}_{2}(\mathrm{DL}-\operatorname{tart})_{2}\right]$ in the $a b$-plane.
3.1.2. $\left[\mathbf{T b}_{\mathbf{2}}(\text { D-tart })_{3}\left(\mathbf{H}_{\mathbf{2}} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{\mathbf{2}} \mathrm{O}$ (5). Compound 5, crystallizing in the triclinic system in the Pl space group, has a 3-D network by connecting the $\mathrm{Tb}(\mathrm{III})$ ions with neighboring tartrates (figure 4). It is similar to 1 having a 3-D open framework with a higher level of ancillary aquation than $\mathbf{1}$. The structure has hydrophilic channels of ca. $4 \times 7 \AA$. Although two $\mathrm{Tb}(\mathrm{III})$ ions are pseudo-inversion related, their chemical environments are similar with coordination by nine oxygens, one oxygen from water and eight oxygens from five tartrates (figure 5a). Tb1 adopts a distorted monocapped square-antiprism coordination geometry (figure 5b), whereas Tb 2 is a distorted tricapped trigonal prism (figure 5c). Although the three tartrate ligands are


Figure 1. Molecular structure of $\mathbf{1}$ viewing along $c$ axis (hydrogen atoms and interstitial water molecules were omitted for clarity).

(a)

(b)

(c)

(d)


Figure 3. Binding modes of tartrate: (a) $\mu_{3}, \kappa^{5}$ in $\mathbf{1}$; (b) $\mu_{4}, \kappa^{6}$ and (c) $\mu_{2}, \kappa^{4}$ in $\mathbf{5}$; (d) $\mu_{2}, \kappa^{3}$ in 7 .


Figure 4. Perspective view of $\mathbf{5}$ along $c$ axis (hydrogen atoms and interstitial water molecules were omitted for clarity).
3.1.3. $\left[\mathrm{Lu}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right)\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{6}\right)\right] \cdot \mathbf{2 . 5} \mathrm{H}_{\mathbf{2}} \mathrm{O}$ (7). Compound 7, crystallizing in the tetragonal system in the $P 4_{1} 2_{1} 2$ space group, is a 2 -D chiral sheet built by connecting $\mathrm{Lu}(\mathrm{III})$ ions with bridging tartrates (figure 6a). Each $\mathrm{Lu}(\mathrm{III})$ ion is nine-coordinate from three oxygens from three waters and six oxygens from four tartates in a tricapped trigonal prism coordination geometry (figure 6b). The dihedral angle between the two triangular faces is ca. $3.23^{\circ}$. The O3, O8, and O3' are on the tops of the three square pyramids. Each tartrate bridges two $\mathrm{Lu}(\mathrm{III})$ ions through "1,2-chelation" involving a carboxylate oxygen and the ortho-hydroxy in $\mu_{2}$, $\kappa^{3}$ mode (figure 3d). Interestingly, it is just half of the coordination mode of $\mu_{4}, \kappa^{6}$ for tartrate in $\mathbf{5}$. The bond lengths of $\mathrm{Lu}-\mathrm{O}$ are in the range of $2.275(3)-2.629(6) \AA$. The molecular structure has two-fold symmetry with Lu and O 8 on the symmetry axis. The $\mathrm{Lu}-\mathrm{O}(8)$ bond distance of $2.629(6) \AA$ is the longest, implying disorder in the structure such that the non-coordinated carboxylate is protonated $50 \%$ of the time. The crystal structure and the coordination of tatrate ligands of 7 are isomorphous with those of previously reported complexes [ $\mathrm{Sm}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right)$ $\left.\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{6}\right)\right] \cdot 3 \mathrm{H}_{2} \mathrm{O} \quad[26], \quad\left[\mathrm{Y}_{( }\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right)\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{6}\right)\right] \cdot 2.5 \mathrm{H}_{2} \mathrm{O} \quad$ [27], and $\quad\left[\mathrm{Er}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right)\right.$ $\left.\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{6}\right)\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ [28].


Figure 5. (a) Perspective view of Tb ion in 5. Coordination environments of (b) distorted monocapped square-antiprism for Tb 1 ion and (c) distorted tricapped trigonal prism for Tb 2 ion. Selected bond lengths (A) and angles $\left({ }^{\circ}\right)$ for 5: $\mathrm{Tb}(1)-\mathrm{O}(14) 2.351(8), \mathrm{Tb}(1)-\mathrm{O}(8) 2.363(8), \mathrm{Tb}(1)-(\mathrm{O} 13) 2.380(9), \mathrm{Tb}(1)-\mathrm{O}(18)$ $2.387(8), ~ \mathrm{~Tb}(1)-\mathrm{O}(20) \quad 2.411(8), \mathrm{Tb}(1)-\mathrm{O}(6) \quad 2.417(9), \mathrm{Tb}(1)-\mathrm{O}(15) 2.463(9), \mathrm{Tb}(1)-\mathrm{O}(9) 2.607(8)$, $\mathrm{Tb}(1)-\mathrm{O}(5) \quad 2.691(9) ; \quad \mathrm{O}(14)-\mathrm{Tb}(1)-\mathrm{O}(8) \quad 83.1(3), \quad \mathrm{O}(14)-\mathrm{Tb}(1)-\mathrm{O}(13) \quad 131.6(3), \quad \mathrm{O}(8)-\mathrm{Tb}(1)-\mathrm{O}(13)$ $74.6(3), \quad \mathrm{O}(14)-\mathrm{Tb}(1)-\mathrm{O}(18) \quad 152.0(3), \quad \mathrm{O}(8)-\mathrm{Tb}(1)-\mathrm{O}(18) \quad 89.9(3), \quad \mathrm{O}(13)-\mathrm{Tb}(1)-\mathrm{O}(18) \quad 71.3(3)$, $\mathrm{O}(14)-\mathrm{Tb}(1)-\mathrm{O}(20) 80.8(3), \mathrm{O}(8)-\mathrm{Tb}(1)-\mathrm{O}(20) \quad 131.9(3), \mathrm{O}(13)-\mathrm{Tb}(1)-\mathrm{O}(20) \quad 144.4(3) ; \mathrm{Tb}(2)-\mathrm{O}(11)$ $2.366(9), \mathrm{Tb}(2)-\mathrm{O}(17) 2.366(8), \mathrm{Tb}(2)-\mathrm{O}(12) 2.383(8), \mathrm{Tb}(2)-\mathrm{O}(19) 2.411(8), \mathrm{Tb}(2)-\mathrm{O}(7) 2.410(8)$, $\mathrm{Tb}(2)-\mathrm{O}(1) \quad 2.500(8), \quad \mathrm{Tb}(2)-\mathrm{O}(2) \quad 2.502(8), \quad \mathrm{Tb}(2)-\mathrm{O}(10) \quad 2.519(8), \quad \mathrm{Tb}(2)-\mathrm{O}(16) 2.614(8) ; \mathrm{O}(11)-$ $\mathrm{Tb}(2)-\mathrm{O}(17) \quad 79.3(3), \mathrm{O}(11)-\mathrm{Tb}(2)-\mathrm{O}(12) \quad 130.3(3), \mathrm{O}(12)-\mathrm{Tb}(2)-\mathrm{O}(19) \quad 146.4(3), \mathrm{O}(12)-\mathrm{Tb}(2)-\mathrm{O}(1)$ $97.9(3), \mathrm{O}(19)-\mathrm{Tb}(2)-\mathrm{O}(1) 79.0(3), \mathrm{O}(7)-\mathrm{Tb}(2)-\mathrm{O}(1) 124.6(3), \mathrm{O}(1)-\mathrm{Tb}(2)-\mathrm{O}(2) 52.1(3), \mathrm{O}(2)-\mathrm{Tb}(2)-$ $\mathrm{O}(16) 137.4(2), \mathrm{O}(7)-\mathrm{Tb}(2)-\mathrm{O}(16) 76.3(3)$.

### 3.2. Thermogravimetric analysis

Thermogravimetric analysis shows that curves for 1-7 are similar. A representative TG-DTA curve of $\mathbf{1}$ is displayed in figure 7. The first step corresponds to loss of noncoordinated water from 50 to $150^{\circ} \mathrm{C}$. The second step is correlated to the loss of coordinated water from 180 to $200^{\circ} \mathrm{C}$, suggesting that these molecules are also involved in hydrogen bonding. After losing all water, molecules remain stable in the temperature range of $200-300^{\circ} \mathrm{C}$ and then start to decompose. The final residue is $\mathrm{Ln}_{2} \mathrm{O}_{3}$.


Figure 6. (a) Perspective view of 7 along $c$ axis; hydrogen atoms and interstitial water molecules were omitted for clarity. (b) Coordination environment of distorted tricapped trigonal prism for Lu1 ion. Selected bond lengths ( A ) and angles $\left({ }^{\circ}\right)$ for 7: $\mathrm{Lu}(1)-\mathrm{O}(1) 2.275(3), \mathrm{Lu}(1)-\mathrm{O}\left(1^{\prime}\right) 2.275(3), \mathrm{Lu}(1)-\mathrm{O}(2) 2.297(3)$, $\mathrm{Lu}(1)-\mathrm{O}\left(2^{\prime}\right)$ 2.297(3), $\mathrm{Lu}(1)-\mathrm{O}(3) 2.458(3), \mathrm{Lu}(1)-\mathrm{O}\left(3^{\prime}\right) 2.458(3), \mathrm{Lu}(1)-\mathrm{O}(7) 2.329(4), \mathrm{Lu}(1)-\mathrm{O}\left(7^{\prime}\right)$ $2.329(4), \mathrm{Lu}(1)-\mathrm{O}(8) 2.629(6) ; \mathrm{O}(1)-\mathrm{Lu}(1)-\mathrm{O}(2) 80.99(1), \mathrm{O}(1)-\mathrm{Lu}(1)-\mathrm{O}\left(2^{\prime}\right) 80.99(1), \mathrm{O}(1)-\mathrm{Lu}(1)-\mathrm{O}(7)$ $86.28(1), \quad \mathrm{O}\left(1^{\prime}\right)-\mathrm{Lu}(1)-\mathrm{O}\left(7^{\prime}\right) \quad 86.28(1), \quad \mathrm{O}(1)-\mathrm{Lu}(1)-\mathrm{O}(3) \quad 65.17(1), \quad \mathrm{O}\left(1^{\prime}\right)-\mathrm{Lu}(1)-\mathrm{O}\left(3^{\prime}\right) \quad 65.17(10)$, $\mathrm{O}(1)-\mathrm{Lu}(1)-\mathrm{O}(8) 136.91(8), \mathrm{O}\left(1^{\prime}\right)-\mathrm{Lu}(1)-\mathrm{O}(8) 136.91$ (8).


Figure 7. TG-DTA curve of $\mathbf{1}$.

### 3.3. Luminescent properties

The luminescent properties of $\mathbf{4 , 5}$, and $\mathbf{6}$ were investigated in solid state. The emission spectra of the three complexes exhibit the characteristic emissions of $\mathrm{Eu}(\mathrm{III}), \mathrm{Tb}(\mathrm{III})$, and $\operatorname{Dy}($ III ), respectively (figure 8). For 4, five emission bands at 558, 590, 616, 650, and


Figure 8. Luminescence spectra for (a) 4, (b) 5, and (c) 6.

700 nm are observed upon excitation at 395 nm , assigned to ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{0},{ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{1}$, ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2},{ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{3}$, and ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{4}$ transitions, respectively. The bands at 590,616 , and 700 nm were obviously split into doublet, triplet, and triplet, respectively, and can be attributed to sublevel splitting from the ${ }^{7} \mathrm{~F}_{1},{ }^{7} \mathrm{~F}_{2}$, and ${ }^{7} \mathrm{~F}_{4}$ energy levels by the ligand field. The band at 616 nm is the strongest so that $\mathbf{4}$ emits red luminescence. It is similar to the characteristic emission of $\mathrm{Eu}(\mathrm{III})$ in several known complexes, e.g. $\left\{\left[\mathrm{Eu}_{2}\right.\right.$ $\left.\left.(\mathrm{HL})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}\right\}_{n}\left(\mathrm{H}_{3} \mathrm{~L}=3,5\right.$-pyrazoledicarboxylic acid) [3], $\left[\mathrm{Eu}_{2}(\mathrm{XA})_{6}(\mathrm{DMSO})_{2}\right.$ ] (HXA = xanthene-9-carboxylic acid; $\mathrm{DMSO}=$ dimethylsulfoxide) [4], [ $\mathrm{Eu}_{5} \mathrm{~L}_{4}(\mathrm{OH})_{2}$ $\left.\left(\mathrm{NO}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{NO}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O},\left(\mathrm{H}_{2} \mathrm{~L}=N\right.$, $N^{\prime}$-bis(5-bromo-3-methoxysalicylidene)phe-nylene-1, 2-diamine) [5], $\left[\mathrm{EuCd}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{5}(\right.$ phen $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \quad\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}=4\right.$-methoxybenzoato; phen $=1,10$-phenanthroline $)[6],\left[\mathrm{L}_{3} \mathrm{Eu}_{2}\right][(\mathrm{L}=$ chiral tartaric acid derived $\operatorname{bis}(\beta$-diketonate $)][7],\left[\mathrm{Eu}(\mathrm{tta})_{3}\left(\mathrm{Fc}_{2}\right.\right.$ phen $\left.)\right]\left(\mathrm{tta}=2\right.$-thenoyltrifluoroacetonate, $\mathrm{Fc}_{2}$ phen $=$ bis(ferrocenyl-ethynyl)-1,10-phenanthroline), $\left[\mathrm{Eu}(\mathrm{fta})_{3}(\mathrm{phen})\right] \quad(\mathrm{fta}=$ ferrocenoyltrifluoroacetone; phen $=1,10$-phenanthroline) [8] and $\left[\mathrm{Eu}\left(\mathrm{H}_{2} \text { salen }\right)_{1.5}\left(\mathrm{NO}_{3}\right)_{3}\right]$ [ $\mathrm{H}_{2}$ salen $=N$, $N^{\prime}$-ethylenebis(salicylideneimine)] [9]. Although the emission spectra for these complexes were slightly different, their main emitting bands were very similar at ca. 616 nm . For 5, four emission bands at $491,545,585$, and 621 nm are observed upon excitation at 235 nm . These are assigned to ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{6},{ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{5},{ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{4}$, and ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{3}$ transitions, respectively. The main emitting band at 545 nm corresponds to green emission, in agreement to the characteristic emission of $\mathrm{Tb}(\mathrm{III})$ ion in $\left[\mathrm{Tb}_{3}(\mathrm{BDC})_{4.5}(\mathrm{DMF})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \cdot(\mathrm{DMF})\left(\mathrm{H}_{2} \mathrm{O}\right)\right](\mathrm{BDC}=1,4$-benzenedicarboxylic acid, $\mathrm{DMF}=N, N^{\prime}$-dimethylformamide) [10], $\left\{\left[\mathrm{Tb}_{2}(\mathrm{HL})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right]\right\}_{n} \quad[3], \quad\left[\mathrm{Tb}_{2}(\mathrm{XA})_{6}\right.$ $\left.(\mathrm{DMSO})_{2}\right][4], \quad\left[\mathrm{TbCd}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{5}(\mathrm{phen})\left(\mathrm{H}_{2} \mathrm{O}\right)\right], \quad\left[\mathrm{Tb}\left(\mathrm{H}_{2} \mathrm{~L}\right)\left(\mathrm{NO}_{3}\right)_{3}\right]\left[\mathrm{H}_{2} \mathrm{~L}=N\right.$, $N^{\prime}$-ethy-lene-bis(3-methoxysalicylideneimine)] [11] and $\left[\left(\mathrm{H}_{2} \mathrm{~L}\right) \mathrm{Tb}\left(\mathrm{NO}_{3}\right)_{3}\right] \quad\left[\mathrm{H}_{2} \mathrm{~L}=N, N^{\prime}\right.$-bis (2-hydroxy-3-methoxybenzylidene)- $N$-ethylic-1,2-dimine] [12]. For 6, three emission bands at 480, 573, and 660 nm are observed upon excitation at 395 nm , assigned to ${ }^{4} \mathrm{~F}_{9 / 2} \rightarrow{ }^{6} \mathrm{H}_{15 / 2},{ }^{4} \mathrm{~F}_{9 / 2} \rightarrow{ }^{6} \mathrm{H}_{13 / 2}$, and ${ }^{4} \mathrm{~F}_{9 / 2} \rightarrow{ }^{6} \mathrm{H}_{11 / 2}$ transitions, respectively. The main emission band is at 573 nm so that $\mathbf{6}$ has emission, consistent to the characteristic emission of $\mathrm{Dy}(\mathrm{III})$ in $\left.\left\{\left[\mathrm{Dy}(\mathrm{HL})\left(\mathrm{H}_{2} \mathrm{~L}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\right\}_{n}[3],\left[\mathrm{Dy}\left(\mathrm{H}_{2} \mathrm{~L}^{1}\right)_{2}\right)\right][13],\left[\mathrm{Dy}_{2}(\mathrm{PDOA})_{3}\right.$ (phen) $\left.)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{H}_{2} \mathrm{PDOA}=1,2\right.$-phenylenedioxydiacetic acid) [14], [Dy(pytpy) $\left.\left(\mathrm{NO}_{3}\right)_{2}\left(\mu-\mathrm{OCH}_{3}\right)\right]_{2}\left(\right.$ pytpy $=4^{\prime}$-(3-pyridyl)-2,2': $6^{\prime}, 2^{\prime \prime}$-terpyridine) [15], [Dy(pmida) $\left(\mathrm{NO}_{3}\right)$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n} \quad\left[\mathrm{pmida}^{2-}=\mathrm{N}\right.$-(2-pyridylmethyl)iminodiacetate] [16] and $\quad[\mathrm{Dy}$ (isophth) (Hisophth) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right]_{n}$ [17] ( $\mathrm{H}_{2}$ isophth $=$ isophthalic acid). The characteristic luminescence of $\mathrm{Sm}(\mathrm{III})$ in $\mathbf{3}$ was not observed, probably attributed to poor efficiency of the intramolecular energy transfer between the triplet state of tartrate and the emitting state of $\mathrm{Sm}(\mathrm{III})$.

## 4. Conclusions

Isolation and characterization of $\mathbf{1 , 5}$, and $\mathbf{7}$ suggests that diverse tartrate lanthanide assemblies are possible, depending on the preparing route and the reaction conditions. The assemblies depend not only on the metal choice, but also on the coordination modes of the tartrate, further demonstrated by $\mathbf{1}$, in which a new coordination mode of tartrate is found. Luminescence analysis indicates that energy levels between triplet state of tartrate and emitting states of $\mathrm{Eu}(\mathrm{III}), \mathrm{Tb}(\mathrm{III})$ and $\mathrm{Dy}(\mathrm{III})$ favor energy transfer, but not for the $\mathrm{Sm}(\mathrm{III})$ complex. Current initiatives at our laboratory are
directed to applications of these chiral lanthanide tartrates on catalysis of asymmetric organic reactions.

## Supplementary material

CCDC Nos. 634818 (1), 666421 (5), 666422 (7) contain the supplementary crystallographic data for this article. These data can be obtained free of charge via http:// www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: (+44) 1223-336-033; or Email: deposit@ccdc.cam.ac.uk.

## Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Nos. 20672032 and 20572018), Heilongjiang Province and Heilongjiang University (Nos. ZJG0504, JC200605, 1152GZD02, and 2006FRFLXG031).

## References

[1] (a) S. Tanase, J. Reedijk. Coord. Chem. Rev., 250, 2501 (2006); (b) G.-M. Li, T. Akitsu, O. Sato, Y. Einaga. J. Am. Chem. Soc., 125, 12396 (2003); (c) M. Sakamoto, K. Manseki, H. Okawa. Coord. Chem. Rev., 219-221, 379 (2001); (d) Y.F. Huang, H.H. Wei, M. Ktada. J. Coord. Chem., 61, 2683 (2008).
[2] (a) S. Handa, K. Nagawa, Y. Sohtome, S. Matsunaga, M. Shibasaki. Angew. Chem. Int. Ed., 47, 3230 (2008); (b) T. Nitabaru, N. Kumagai, M. Shibasaki. Tetrahedron Lett., 49, 272 (2008); (c) S. Handa, V. Gnanadesikan, S. Matsunaga, M. Shibasaki. J. Am. Chem. Soc., 129, 4900 (2007); (d) K. Ohno, Y. Kataoka, K. Mashima. Org. Lett., 6, 4695 (2004); (e) K. Mikami, M. Terada, H. Matsuzawa. Angew. Chem. Int. Ed., 41, 3554 (2002); (f) J. Inanaga, H. Furuno, T. Hayano. Chem. Rev., 102, 2211 (2002).
[3] J. Xia, B. Zhao, H.-S. Wang, W. Shi, Y. Ma, H.-B. Song, P. Cheng, D.-Z. Liao, S.-P. Yan. Inorg. Chem., 46, 3450 (2007).
[4] R. Shyni, S. Biju, M.L.P. Reddy, A.H. Cowley, M. Findlater. Inorg. Chem., 46, 11025 (2007).
[5] X.P. Yang, R.A. Jones, W.K. Wong. Dalton Trans., 1676 (2008).
[6] Y.-X. Chi, S.-Y. Niu, Z.-L. Wang, J. Jin. Eur. J. Inorg. Chem., 2336 (2008).
[7] M. Albrecht, S. Schmid, S. Dehn, C. Wickleder, S. Zhang, A.P. Bassett, Z. Pikramenouc, R. Fröhlich. New J. Chem., 31, 1755 (2007).
[8] Y.-F. Yuan, T. Cardinaels, K. Lunstroot, K. Van Hecke, L. Van Meervelt, C. Gorller-Walrand, K. Binnemans, P. Nockemann. Inorg. Chem., 46, 5302 (2007).
[9] T. Gao, P.-F. Yan, G.-M. Li, G.-F. Hou, J.-S. Gao. Polyhedron, 26, 5382 (2007).
[10] X.-D. Guo, G.-S. Zhu, F.-X. Sun, Z.-Y. Li, X.-J. Zhao, X.-T. Li, H.-C. Wang, S.-L. Qiu. Inorg. Chem., 45, 2581 (2006).
[11] T. Gao, P.-F. Yan, G.-M. Li, G.-F. Hou, J.-S. Gao. Inorg. Chim. Acta, 361, 2051 (2008).
[12] W. Dou, J.-N. Yao, W.-S. Liu, Y.-W. Wang, J.-R. Zheng, D.-Q. Wang. Inorg. Chem. Commun., 10, 105 (2007).
[13] S. Petoud, S.M. Cohen, J.-C.G. Bünzli, K.N. Raymond. J. Am. Chem. Soc., 125, 13324 (2003).
[14] X. Li, Y.-Q. Li, X.-J. Zheng, H.-L. Sun. Inorg. Chem. Commun., 11, 779 (2008).
[15] L. Gou, Q.-R. Wu, H.-M. Hu, T. Qin, G.-L. Xue, M.-L. Yang, Z.-X. Tang. Inorg. Chim. Acta, 361, 1922 (2008).
[16] Y. Li, F.-P. Liang, C.-F. Jiang, X.-L. Li, Z.-L. Chen. Inorg. Chim. Acta, 361, 219 (2008).
[17] B. Yan, Y. Bai, Z. Chen. J. Mol. Struct., 741, 141 (2005).
[18] S. Sivakumar, F.C.J.M. Van Veggel, M. Raudsepp. J. Am. Chem. Soc., 127, 12464 (2005).
[19] G. Zucchi, A.-C. Ferrand, R. Scopelliti, J.-C.G. Bünzli. Inorg. Chem., 41, 2459 (2002).
[20] J.-C.G. Bünzli, C. Piguet. Chem. Rev., 102, 1897 (2002).
[21] D. Parker, R.S. Dickins, H. Puschmann, C. Crossland, J.A.K. Howard. Chem. Rev., 102, 1977 (2002).
[22] S. Petoud, G. Muller, E.G. Moore, J. Xu, J. Sokolnicki, J.P. Riehl, U.N. Le, S.M. Cohen, K.N. Raymond. J. Am. Chem. Soc., 129, 77 (2007).
[23] P.F. Yan, W.B. Sun, G.M. Li, C.H. Nie, T. Gao, Z.Y. Yue. J. Coord. Chem., 60, 1973 (2007).
[24] S. Thushari, J.A.K. Cha, H.H.Y. Sung, S.S.-Y. Chui, A.L.F. Leung, Y.-F. Yen, I.D. Williams. Chem. Соттип., 5515 (2005).
[25] S.C. Manna, E. Zangrando, J. Ribas, N.R. Chaudhuri. Polyhedron, 25, 1779 (2006).
[26] C.-D. Wu, X.-P. Zhan, C.-Z. Lu, H.-H. Zhuang, J.-S. Huang. Acta Cryst., E58, m228 (2002).
[27] M.J. Almond, M.G.B. Drew, S. Morris, D.A. Rice. Polyhedron, 15, 3377 (1996).
[28] F.C. Hawthorne, I. Borys, R.B. Ferguson. Acta Cryst., C39, 540 (1983).
[29] P. Starynowicz, G. Meyer. Z. Anorg. Allg. Chem., 626, 2441 (2000).
[30] J.S. Seo, D. Whang, H. Lee, S.I. Jun, J. Oh, Y.J. Jeon, K. Kim. Nature, 404, 982 (2000).


[^0]:    *Corresponding author. Email: gmli@hlju.edu.cn

